A consistent stable numerical scheme for a nonlinear option pricing model in illiquid markets
نویسندگان
چکیده
Markets liquidity is an issue of very high concern in financial risk management. In a perfect liquid market the option pricing model becomes the well-known linear Black-Scholes problem. Nonlinear models appear when transaction costs or illiquid markets effects are taken into account. This paper deals with the numerical analysis of nonlinear Black-Scholes equations modeling illiquid markets when price impact in the underlying asset market affects the replication of a European contingent claim. Numerical analysis of a nonlinear model is necessary because disregarded computations may waste a good mathematical model. In this paper we propose a finite-difference numerical scheme that guarantees positivity of the solution as well as stability and consistency.
منابع مشابه
Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation
In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...
متن کاملNonlinear option pricing models for illiquid markets: scaling properties and explicit solutions
Several models for the pricing of derivative securities in illiquid markets are discussed. A typical type of nonlinear partial differential equations arising from these investigation is studied. The scaling properties of these equations are discussed. Explicit solutions for one of the models are obtained and studied.
متن کاملNumerical algorithm for discrete barrier option pricing in a Black-Scholes model with stationary process
In this article, we propose a numerical algorithm for computing price of discrete single and double barrier option under the emph{Black-Scholes} model. In virtue of some general transformations, the partial differential equations of option pricing in different monitoring dates are converted into simple diffusion equations. The present method is fast compared to alterna...
متن کاملA New Stock Model for Option Pricing in Uncertain Environment
The option-pricing problem is always an important part in modern finance. Assuming that the stock diffusion is a constant, some literature has introduced many stock models and given corresponding option pricing formulas within the framework of the uncertainty theory. In this paper, we propose a new stock model with uncertain stock diffusion for uncertain markets. Some option pricing formulas on...
متن کاملAn iterative algorithm for evaluating approximations to the optimal exercise boundary for a nonlinear Black–Scholes equation
The purpose of this paper is to analyze and compute the early exercise boundary for a class of nonlinear Black–Scholes equations with a nonlinear volatility which can be a function of the second derivative of the option price itself. A motivation for studying the nonlinear Black–Scholes equation with a nonlinear volatility arises from option pricing models taking into account e.g. nontrivial tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematics and Computers in Simulation
دوره 82 شماره
صفحات -
تاریخ انتشار 2012